Avl平衡树-C语言实现

Avl 平衡树 实现记录

Avl平衡二叉树和搜索二叉树基本实现原理相同,在搜索二叉树的基础上添加树平衡的操作–单旋和双旋(这也是AvlTree的重难点)。插入数据和删除数据的时候对树进行平衡调整。

需要注意:在删除树节点的操作中,要注意更新调整各节点中高度(Height)的值。Google搜索结果中看了前几个实现AvlTree的文章,基本都没考虑节点Height属性的更新。

实现代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#include <stdio.h>
#include <stdlib.h>
#define FatalError(str) fprintf(stderr, "%s\n", str), exit(1);
#define Error(str) FatalError(str);

struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
typedef int ElementType;

struct AvlNode
{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};

AvlTree
MakeEmpty(AvlTree T);
Position Find(ElementType X, AvlTree T);
Position FindMin(AvlTree T);
Position FindMax(AvlTree T);
AvlTree Insert(ElementType X, AvlTree T);
ElementType Retrieve(Position P);
static int Height(Position P);
static int Max(int, int);
static Position SingleRotateWithLeft(Position P);
static Position SingleRotateWithRight(Position P);
static Position DoubleRotateWithLeft(Position P);
static Position DoubleRotateWithRight(Position P);
AvlTree Delete(Position P, AvlTree T);
void printTree(AvlTree T);
void test();

AvlTree MakeEmpty(AvlTree T)
{
if (T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return T;
}

ElementType Retrieve(Position P)
{
return P->Element;
}

Position Find(ElementType X, AvlTree T)
{
if (T == NULL)
{
return NULL;
}
else if (X < T->Element)
{
return Find(X, T->Left);
}
else if (X > T->Element)
{
return Find(X, T->Right);
}
else
{
return T;
}
}

Position FindMin(AvlTree T)
{
if (T == NULL)
{
return NULL;
}
else if (T->Left == NULL)
{
return T;
}
else
{
return FindMin(T->Left);
}
}

Position FindMax(AvlTree T)
{
if (T != NULL)
{
while (T->Right != NULL)
{
T = T->Right;
}
}

return T;
}

static int Height(Position P)
{
if (P == NULL)
{
return -1;
}

return P->Height;
}

static int Max(int height1, int height2)
{
if (height1 > height2)
{
return height1;
}
return height2;
}

AvlTree Insert(ElementType X, AvlTree T)
{
if (T == NULL)
{
T = malloc(sizeof(struct AvlNode));
if (T == NULL)
{
Error("Error: out of space!!!");
}
else
{
T->Element = X;
T->Left = T->Right = NULL;
T->Height = 0;
}
}
else if (X < T->Element)
{
T->Left = Insert(X, T->Left);
if (Height(T->Left) - Height(T->Right) == 2)
{
if (X < T->Left->Element)
{
T = SingleRotateWithLeft(T);
}
else
{
T = DoubleRotateWithLeft(T);
}
}
}
else
{
T->Right = Insert(X, T->Right);
if (Height(T->Right) - Height(T->Left) == 2)
{
if (X > T->Right->Element)
{
T = SingleRotateWithRight(T);
}
else
{
T = DoubleRotateWithRight(T);
}
}
}

T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
return T;
}

// 左单旋
static Position SingleRotateWithLeft(Position P)
{
Position K1;
K1 = P->Left;
P->Left = K1->Right;
K1->Right = P;

P->Height = Max(Height(P->Left), Height(P->Right)) + 1;
K1->Height = Max(Height(K1->Left), P->Height) + 1;

return K1;
}

// 右单旋
static Position SingleRotateWithRight(Position P)
{
Position K1;
K1 = P->Right;
P->Right = K1->Left;
K1->Left = P;

P->Height = Max(Height(P->Left), Height(P->Right)) + 1;
K1->Height = Max(Height(K1->Left), P->Height) + 1;

return K1;
}

// 左双旋
static Position DoubleRotateWithLeft(Position P)
{
P->Left = SingleRotateWithRight(P->Left);
return SingleRotateWithLeft(P);
}

// 右双旋
static Position DoubleRotateWithRight(Position P)
{
P->Right = SingleRotateWithLeft(P->Right);
return SingleRotateWithRight(P);
}

// 删除
AvlTree Delete(Position P, AvlTree T)
{
Position PMix;
Position Tmp;
if (T != NULL)
{
if (T->Element > P->Element)
{
// printf("34\n");
T->Left = Delete(P, T->Left);
T->Height = Max(Height(T->Right), Height(T->Left)) + 1;
if (Height(T->Right) - Height(T->Left) == 2)
{
if (T->Right->Element < P->Element)
{
return SingleRotateWithRight(T);
}
else
{
return DoubleRotateWithRight(T);
}
}
}
else if (T->Element < P->Element)
{
T->Right = Delete(P, T->Right);

T->Height = Max(Height(T->Right), Height(T->Left)) + 1;

if (Height(T->Left) - Height(T->Right) == 2)
{
if (T->Left->Element > P->Element)
{
return SingleRotateWithLeft(T);
}
else
{
return DoubleRotateWithLeft(T);
}
}
}
else
{
if (T->Right != NULL && T->Left != NULL)
{
if (Height(T->Right) > Height(T->Left))
{
PMix = FindMin(T->Right);
T->Element = PMix->Element;
T->Right = Delete(PMix, T->Right);
}
else
{
PMix = FindMax(T->Left);
T->Element = PMix->Element;
T->Left = Delete(PMix, T->Left);
}
T->Height = Max(Height(T->Right), Height(T->Left)) + 1;
}
else
{
Tmp = P;
T = P->Right ? P->Right : P->Left;
free(Tmp);
}
}
}
return T;
}

void printTree(AvlTree T)
{
if (T != NULL)
{
printTree(T->Left);
printf("%d", T->Element);
printTree(T->Right);
}
}

void test()
{
int i,n;
AvlTree T;
Position P;
n = 20;
for(i = 0; i < n; i++)
{
T = Insert(i, T);
}

printTree(T);
P = Find(4, T);
T = Delete(P, T);

P = Find(5, T);
T = Delete(P, T);

P = Find(17, T);
T = Delete(P, T);

T = Insert(5, T);

printf("\n");
printTree(T);
printf("\n");
printf("根节点的高度:%d\n", T->Height);
printf("根节点的值:%d\n",T->Element);
}

int main()
{
test();
}